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Heterogeneity of colloidal particle networks analyzed by means of Minkowski functionals
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The heterogeneity and large scale connectivity of colloidal particle networks, which are generated by
Brownian dynamics simulations, is examined. This is achieved by employing integral geometric measures in
the form of the Minkowski functionals or quermassintegrals. It is found that these measures in conjunction
with the parallel-body technique amount to a powerful tool to characterize the structure, going beyond the
information contained in the pair-correlation function. The development of heterogeneities during network
formation as well as their dependence on the volume fraction and the interaction potential is studied. In
particular, it is found that slow coagulation enhances the heterogeneity of the network compared to fast

coagulation.
DOI: 10.1103/PhysReVvE.68.031404 PACS nuner82.70.Gg, 02.40:k, 61.43—]
I. INTRODUCTION the pore size distribution of the network as weD]. How-

ever, most detailed local structural and dynamical informa-
Colloidal systems experience significant attention nottion in dense systems has recently been obtained with con-
only from experimentalists but also from theoreticians, afocal laser scanning microscopy. This direct visualization
they may serve as model systems for atomic systems. Due technique has been used to study colloidal gels and glasses
their characteristic length and time scales, interesting phg21-24 via time-resolved determination of the particles’
nomena become experimentally accessible. Such phenometitee-dimensiona(3D) coordinates. Nevertheless, irrespec-
include complex flow behavior such as shear thinning andive of the problems encountered in the experimental struc-
shear thickening, as well as the formation of flocs, aggreture characterization, the following question remains still
gates, and gels upon destabilization. In the following, Wegppen. If one aims at establishing a relation between the struc-
focus our attention on the characterization of the structure ofye of the particle gel and macroscopic, e.g., mechanical
colloidal gels, in particular, on finding reasonable means bep operiies;, it is unresolved which measures of the network
yond the pair-correlation function to describe the structure. g cture capture those features relevant for understanding

In_experiments at low volume fractions, the SUUCIUrey,o 4 croscopic properties. It is noteworthy that even if all
characterization of colloidal particle aggregates is often per-

formed by transmission electron microscad@&M) [1-3] or particle coordinates would be known, e.g., as in the case of

by scattering techniquest,5], where the latter directly re- IBa rsoe\:,\rlr;sgng?/nnarrgli(éfozgg‘fgg QStl:r?éérge?;t?oan %refv?lgfeoncalel
sults in the pair-correlation functiog(r) for dilute systems. 9 ’ 9

In nondilute systems, light scattering includes contributionsStructure and mechanical properties remains obscured due to

from multiple scattering which need to be eliminated by ei-th_e V‘_’“St amount of information on the particulate level. Thus,
ther using cross-correlation techniqUés-9], index match-  Pridging the gap from the particle to the network scale and
ing [10], or small angle neutron scatterifiL]. Contrary, the underst_andmg their mter-relatl_on means to mtrodt_Jce an in-
concept of porosity and pore size distribution used for thdermediate level of coarse graining. In order to gain a better
characterization of rigid bodies and compacted powderginderstanding of the structure-property relationship, it is of
[12,13 captures aspects clearly beyond the capability ofParamountimportance to discuss the proper choice of coarse-
pair-correlation functions, e.g., connectedness, and thus pr@rained measures of the particle gel structure. Considering
vides useful additional informatiofi3]. In nonrigid materi- the concept of the so-called load-bearing strings or force
als, the determination of the porosity is a formidable taskchains in granular medi@3-34, we can anticipate that also
Freeze-fracture techniques in combination with TEM,15 in colloidal networks such substructures are relevant, which
or cryogenic scanning electron microscopgeryo-SEM are not described by the pair-correlation function.
[15,16 have been used to study the microstructure of con- Computer simulations, and, in particular, Brownian dy-
centrated suspensions. To hinder the formation of large icaamics simulations, are in the mean time well recognized as
crystals[17], cryo-SEM in connection with high-pressure being appropriate for studying colloidal systems, and have
freezing[18] has recently been applied to examine the strucheen used extensively in recent years also to study the co-
ture of surface sectior[49]. In order not to be restricted to agulation behavior and network formatigsee, e.g., Refs.
the analysis of surface sections, restricted diffusion in freezg25—32). Concerning the network structure characterization,
dried food has been studied using nuclear magnetic resanost of this work is restricted to give information on the
nance techniques, which allows to get a certain measure @fair-distribution functiorg(r), either directly or by means of
the mass-fractal dimension. Only little information is avail-
able beyondy(r), e.g., in the form of bond-angle distribu-
*Present address: Department of Chemical Engineering, Mass&ion functions(depending on the three-point correlation func-
chusetts Institute of Technology, Cambridge, MA 02139, USA.tion) [32] or in terms of the coordination number, which is
FAX: +1 617 258-0546; Electronic address: mhuetter@mit.edu restricted to provide short range informatif2®]. Only re-
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cently, other measures closely related to the pore size distrfunctionals are also well defined for polyhedra with singular
bution have been used to characterize the structure of thedges[39]. In addition to the above definitions in terms of
network, which have been found to clearly distinguish be-surface integrals, the zeroth Minkowski functiongy, is de-
tween simulated gels of differing textuf80,31]. fined as the volume of the compact domainConclusively,
Mathematics provides various tools to characterize geothe functional W, has dimension (lengtAY” (v
metrical objects. Whereas differential geometry is well=0,1, ... d). As an example, for a set &f nonoverlapping
known for the discussion of local properties for a given sur-spheres of radiuR in k3, the values of the functionals are
face, e.g., critical and saddle points, it is the main focus of
integral geometry to find measures for the overall morphol-
ogy and topology of the structure, i.e., also for the connec-
tivity. We here want to illustrate to what extent the integral
geometric measures, which crystallize into the so-called In general, the characterization of a domaCR® as
Minkowski functionals and the parallel-body technique, aredescribed above results in four numberd/,(A) (v
useful to examine colloidal particle networks. For that pur-=0,1,2,3), measuringi) volume, (i) surface,(iii) average
pose we analyze particle networks generated by our Brownmean curvaturda characteristic length scajeand (iv) the
ian dynamics simulation scheme used in previous studiesonnectivity. The latter is defined as the number of discon-
[32,37. nected components plus the number of cavities minus the
The paper is organized a follows. After introducing the number of tunnels of the domaii, i.e., it is a topological
Minkowski functionals in the following section and estab- measure. It will prove to be of substantial interest in the
lishing their link to the pore size distribution used in Refs. study of colloidal gels. The understanding of the morphology
[30,31], they are then used to analyze configurations gener@nd topology of a domaiA can be substantially enhanced by
ated by Brownian dynamics simulations of coagulating col-€xamining the functionals when “blowing up” the domain
loidal systems for different volume fractions and interactionMore rigorously speaking, one can study the Minkowski

4T
W,=N-—

, 3 R (v=0,1,2,3. ®)

potentials. functionals of thee surrounding £=0) of A, A,:={y|lly
—X|<e,xe A}. The domaim, is then called a parallel body
Il. CHARACTERIZATION of A. The study of the Minkowski functional§V,(A,),
OF PARTICLE-NETWORK STRUCTURES which are now functions of [in contrast tow,(A)], allows
) ) ) for a deeper understanding of the structure, as shall be illus-
A. Minkowski functionals trated in this paper. The parallel-body technique is particu-

We here give a short introduction to the Minkowski func- larly useful when analyzing the structure of a many-particle
tionals of integral geometry. For more details the reader isystem of equally sized spheres with radRje.g., colloidal
referred to Refs.[38—41. Minkowski functionals, also particle gels. Consider a set Nfspheres in domaif2, with
known as intrinsic volumegjuermassintegrals, curvature in- then-point distribution functiong,(I",) (n=1, ... N) with
tegralg, are used in integral geometry to characterize surl’ ,=(Xq, ... X,) and letA,= U:\LlBr(xi), whereB, (X;) is a
faces and shapes. A denotes a compact domain i with sphere of radiug and centerk;. Our interest is now in the
regular boundaryAeC?, andd—1 principal radii of cur-  properties of the surface of this union of penetrable spheres,

vatureR; (i=1,...d—1), functionalsW, (v=1) can be JdA,. It can be shown that the Minkowski functionals f&y
defined by the following surface integrals: are given by(see, e.g., Ref42])
_ 1 1 N (_1)n+1 n
WV+1(A)_ d J&ASV(R_]_, PP ,Rd1>d8, WV(AT ,{pn}): 2 n—lj anWV( m BT(XI))
(erl)(VJrl n=1 : @ i=1
() Xpa(Ty)  (v=0,1,2,3. (4)

wheresS, is the vth elementary symmetric function and g, r=R, we recover the four values for the Minkowski

d_efz'notgs theq— %c)—dlmens_lonal ;urfetlce elfement. In the spe-gnetionals of the real structure. Note that the Minkowski
cific situation of a two-dimensional surface embedded ingnctionals capture some information of aHpoint distribu-

three-dimensional space, we find tion functions in a condensed form due to the overlapping of
1 10 1/1 1 n (imaginary spheres. However, this information can only
W1=—J ds, W2=—J —(—+ —) ds, be recovered through thhedependence of the four functions
3J)on 3Jm2 Ry Ry given in Eq.(4). This fact raises the hope that, by using

functionals (4), information can be revealed which is not

W :Ef 1 ds @) accessible through the pair-correlation function commonly
373).aRR, employed. In the present study we attempt to illustrate to

what extent the parallel-body technique in conjunction with

Note that the integrand W, is the mean curvature, whereas the Minkowski functionals offers a useful tool for character-
the integrand inW; is the Gaussian curvatuf@sually de- izing the structure, in particular, also the heterogeneity, of the
noted byH andG, respectively. Although using the concept colloidal particle networks. This technique has been success-
of regular surfaces for their definition here, the Minkowski fully applied for analyzing the structure of a Lennard-Jones
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TABLE |. Potential parameters for the coagulating suspension.

Parameter Symbol Value Unitsl)
Hamaker constant of AD; in water Ay 4.76x10 % J
Particle radius R=d/2 2.5<10°7
Relative dielectric constant of water € 81
Absolute temperature T 293 K
Valency of ions z 1
Surface potential Yo 0.0-0.015 \%
Inverse Debye screening length K 10"8 m~?

fluid [42] and in cosmology for quantifying higher-order cor- detail in Refs.[32,37. Particle motions are monitored in

relations of galaxy cluster distributiod3,44. terms of solvingN coupled stochastic differential equations
for the three-dimensional position vectors in the over-
B. A possible definition of “pore size distribution” damped limit,

We here briefly address a possible definition of “pores” in 1
a network and the corresponding pore size distribution. Indfi:ZFipOt(fl, o)t V2kgT/ZdW; - (=1, ... N),
particulate networks, this question is interesting since, e.g., 6)
two pores connected by a tunnel could also be considered
one pore, depending on ratio of the tunnel diameter to thén the absence of external forces and flow. In the present
diameter of the “big” pores. Thus, counting pores is in prin- study, the system size [$=8000. The dissipative nature of
ciple a highly nontrivial problem, at least in particulate net-the above equations originates from considering Stokes’ drag
works. Among other structure characterization methods, theiith a friction coefficient{ ({=6m7sowenR With 7sovent
following definition of the pore size distribution is discussed =102 Pa s), however, multiparticle hydrodynamic interac-
in Refs.[45-47: It is given by the normalized probability tions are neglected. For the potential interaction forg&%
p(r')dr’ that a randomly placed point lies in the interval pairwise additivity of Derjaguin-Landau-Verwey-Overbeek-
[r',r'+dr’[ from the surface of the closest particle, i.e., (DLVO) interaction forces is assumed, the latter consisting of
from the pore surface. It is straightforward to show that thisyan der Waals attraction and electrostatic double layer repul-
distribution functionp(r') is proportional to the surface of sjon,

the setA, of (overlapping spheres defined above with
— R‘f’r,, i.e., VpOt:VVdW+VeI, (7)

p(r")=ANWi(Agir i{pn}), 5) with
where A is a normalization constant. We mention that this VYW ) — —Ay| d? N d_2+2| r?—d? ®
definition, which gives a useful measure for the pore size (N= 12 [j2_g2 2 n d2 '

distribution, is distinct from the pore size distribution deter-

mined from mercury porosimetry for two reasons. First, in 2

the latter method big pores with only small necks are Ve(r)=meeqd exp(— k{r—d}).
counted as small pores of the size of the nekd] and ©)
second, the former method overestimates the number of

small pores since within every large pore a lot of test pointsThe parameters used in this study are specified in Table I,
are placed, also such close to the pore surface. Neverthelegyd the resulting potential is displayed in Fig. 1. The corre-
taking the stand point that integral geometric measures mayponding values of the energy barrieE, which denotes the

be useful for the network characterization and also appeaarrier between the local maximum and the secondary mini-
due to their solid mathematical background, the pore sizezym, is given in Table Il.

distribution defined above nicely fits into this concept. As the  The second term in the evolution equati@ represents
above definition of the pore size distribution function hasthe influence of the Brownian forces, the amplitude of which
been used in Ref$30,31 to analyze colloidal particle gels, s coupled to the friction coefficient in the first, damping
we attempt to show in this paper to what extent the usalof  term in Eq.(6) through the fluctuation-dissipation theorem of

AkgT I_(zewo)

e @M ZiT

four Minkowski functionals is beneficial. the second kindsee, e.g., Refd48,49). A rigorous treat-
ment of random forces is given within the stochastic calculus
I1l. BROWNIAN DYNAMICS SIMULATIONS of the independent Wiener processés [49,50. The dy-

namic equation$6) have been solved using a two-step inte-

gration scheme with an order of weak convergence of 2 and
The general procedure for simulating the formation of thean integration time stept=10" ¢ s=(2x 10" %) 7, in com-

colloidal particle network used here has been described iparison to the characteristic Brownian diffusion timg; .

A. Algorithm for particle dynamics
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10.0 ; ; ; ; with the anglea;; between the normals &, (x;) andB,(x;)
alongA;; , and|x;—x;|=a;;<2r. An uncovered verte®;;,
>0 at the common intersection of three spheigéx;), B, (X)),
ool and B,(x,) contributes toW, through the solid angle
% spanned by the three surface normals at that position. Using
= -50 I'Huilier’s formula one finds
=
-10.0 4 3 2
taf(ZW&ijk
-15.0
00 / . | . =tar( a1+ ay+asg tar( a1+ ay—ag
.00 102 1.04 1.06 1.08 1.10 4 4
rd a—artasg —atar,tas
FIG. 1. DLVO-interaction potential/(r/d) vs reduced center- Xtar( 2 )tar( 2 )
to-center particle separatiarid (d particle diameterfor different
surface potentials, and corresponding energy batkier (a) pure (12
van der Waals attractiorth) AE/kgT=0, (c) AE/kgT=5.65. with
For the implementation of the constraint motions of bonded ar) %= ) Ix—xd
particles, the reader is referred to Rdf32,37. i (%) :%, i (?2) = I2r <

B. Calculation method for Minkowski functionals a ||X —x ||
. _3) _Ixi=xd

2 2r

The Minkowski functionalsW (A, ;{p,}) for a point set (13

given in Eq.(4) are calculated as follows. While the volume,
v=0, is determined by Monte Carlo integration, one pro-In conclusion, the values for the functionalg, (A, ;{pn})
ceeds differently for=1,2,3 as described in detail in Ref. for v=1,2,3 become
[43]. The surface of the sei, introduced in Sec. Il A con-
sists of piecewise spherical contours with curvature radius
If two spheres intersect, these contours are joined along cir-
cular arcs, whereas there are singular poifvsrtices if
three spheres intersect. In the present study in the absence of
regular crystalline arrangements, singular points where four WA, i{pah) = 2 Wa— 2 Woj, (15
or more spheres intersect have negligible weight and can ' .
therefore be neglected.

Consider now a sphei#, (x;) which is only partially cov- W3(A, {pnh) =, Wa;— > W), + > Wy, (16)
ered by other spheres. If the amount of the uncovered area [ i ijk

dB; is denoted byS;, the Minkowski functionals forv ,
=1,2,3 for that particular surface become where the sums run over all uncovered surface pieces, arcs,

and vertices. A description of how to deal with the particles
1 1 1 intersecting the boundaries of the simulation box can be
Wl'i=§Si, Wz,i:§S, W3,i=ﬁ8i. (100  found in Ref.[51], and shall not be discussed here in more

W, (A, ;{pn}):Zi Wy, (14)

detail.
On the intersectiorB, (x;) N B,(x;) of two spheres, the un- C. Simulations of network formation
covered ardy;; of lengthl;; results in the contributions
1. Progressing network formation
1 ajjli; The evaluation of the formation of colloidal particle gels
Waj; :gaijlij v Wajj B (1)  is examined in the following. Here, as discussed above, this
3rro—(a;/2) shall be achieved through studying thelependence of the

four Minkowski functionals W, (A, ;{p.}) (»=0,1,2,3)
TABLE II. Energy barrierAE as a function of surface potential given in Eq.(4). In order to get an understanding of how
o. characteristic features emerge in these four functions, we
first study a progressing network formation of a sample at
Yo 0.0-115 120 125 13.0 135 140 145 150 Vvolume fraction ¢=0.40 and surface potentialy
(mv) =0.0 mV. The evolving network is built from particles in
AE the primary minimum of the DLVO-interaction potential at
(kery 00 0076 0522 120 207 301 431 565 particle surface contact, such bonds being considered irre-
versible. The states at the different stages are labelesdl,by
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FIG. 4. Minkowski functionalW,(r): Monitoring the progress

FIG. 2. Minkowski functionaMW,(r): Monitoring the progress of network formation of a sample witth=0.4 andAE/ksT=0.0.

of network formation of a sample witth=0.4 andAE/kgT=0.0.

f the real system can be extracted, Wg(R)= ¢$=0.4. As

he imaginary spheres are blown up beyandR, many-
particle correlation functions come into play, resulting in a
separation of the curves for the different valuesngf. The
curves come to a constant value when tloeerlapping
spheres occupy the entire sample, which result8Vy¥ ¢

=1 andW;=W,=W53=0. We notice in all four figures that
this range becomes broader with progressing network forma-

ues are normalized with respect to trea) particle radius .. SO : .
. tion, which indicates the existence of larger and larger void

R. As the values of\\V; ,W,,WS5) overall scale with the num- L . . .
spaces. Furthermore, it is interesting that the functions dis-

ber of particles, these functions have been normalized with D )
. play more characteristics the higher the valuevofWhere
respect to their values of the real systenr atR. (For ex-

ample, the volume fraction is restricted[10,1], whereas the the effeqt of space filling is S|mply slowegee Fig. 2 the
. . e change in surface shows two regimes forR. Apart from
amount of interface per volume can in principle become ar-

L : . P B the extended approach w,(r)=0, the surface gaifi.e.,
b|tr§1rlly large) GS‘”Q from left to right in I_:lgs._ 2-5, we the slope inW,(r)] just abover =R turns negative which
notice that up ta =R all curves collapse as in this range we can onlv occur in the presence of densified regions. How-
only probe an ensemble of isolated sphefeste that the y P 9 ‘
spheres have a hardcore radiusfRofvhich keeps them from

which is defined as the number of bonded neighbors of eac
particle averaged over all particléwhich would be in the
range between 0 and 12 for spherical particlesd finally
normalized by 12i.e., 0<m,<1, m,=1 only for hexagonal
close packing The Minkowski functionals for the different
values ofm, are shown in Figs. 2—5, where the arrows point
in the direction of progressing network formation. Tiheal-

overlap in the Brownian dynamics simulatjoithe values of o0 | Y ' : T

W, are hence given by E@3). At r =R, the volume fraction gg’o:o @l Q
r — = d

15

W3(r) | W3R)

Wi Wi (R)

1
15 2

ry/R ra/R 1R
' s : > FIG. 5. Minkowski functionalWs(r): Monitoring the progress
FUR TR riR of network formation of a sample witth=0.4 andAE/kgT=0.0.

The two-dimensional configurations sketch the formation of bonds,
FIG. 3. Minkowski functionalW,(r): Monitoring the progress cavities, and their destruction as the radius of the imaginary spheres
of network formation of a sample witth=0.4 andAE/kgT=0.0. increases.
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TABLE IlI. Critical radiusr . to capture 99% of all particles ina \We note that, since the system is in a finite simulation box
single cluster. and boundary effects are not counted, and according to defi-
nition (1), limg_,..W5(R) =0 as there is no surface.

Th 0.05 0.10 0.15 0.20 0.25 030 0.35 0.40

I'C/R 1.167 1.169 1.168 1.154 1.125 1.006 1.004 1.009 2. Decreaging volume fraction

The effect of developing heterogeneities on the
o ) ) Minkowski functionals has been examined in the preceding
ever, t_he .most intriguing function ®/s(r), Fig. 5. Recall section as network formation progresses. We now wish to see
that this displays the number of components plus the numbethe effect of diluting the system. To that end, volume frac-
of ca\_/ities minus the number of_tunne_ls. _In order to simplifytions in the rangep <[0.2,0.4 in steps ofA ¢=0.025 have
the dlscu§3|0?, the dots”m the figure indicate th@luesrc  poqn examined. As the stationary state of the network forma-
above which “aimost all” particles are part of the same Clus'tion is inaccessible by dynamic computer simulations, the

ter (gel), i.e., above which the number of components is . :
structures examined here correspond to the instant when all
close to one. Note that thedependence of humber of com- - X i
Ilusters/flocs joined to the single cell-spanning network. Al-

ponents has bad statistics since a few particles situated eith h this choice is t tain d bit int
in a big void space or close to other particles significantlyt ougnh this choice IS 1o a certain degree aruitrary, we poin
change the number of components for givetor that rea- out that the corresponding values of the cross-linking param-

son, the dots in the figure denote the values above whicRter 7, were within 15% of their extrapolated steady state
99% of all particles are part of the same cluster. The value¥alues[29,37,52. In the present context this is considered to
are also tabulated in Table. IlI be sufficient as the trends in the results come out clear.

For interpreting the Cavity and tunnel Contributiong/ﬁa The volume fraction dependence of the Minkowski func-
contained in Fig. 5, we discuss three characteristic radii, tionals is shown in Figs. 6-9, where the arrows point in the
=R, ry, andr,. First, tunnels can form as soon as particlesdirection of increasing volume fraction. The trends of the
may contact. Thug,=R is a lower limit for the formation of volume fraction dependence are not very clear in the range
tunnels, i.e., closed loops of particles. Second, consideringR,r1] for (W;,W,,Ws), and the dashed arrow in Fig. 9
an equilateral triangle of side lengtiR2 one notices that a indicates the overall trend, which is however not followed by
lower limit for destructing a tunnel is,=2R/+/3 (which is  all samples. The influence of change in volume fraction be-
the distance from the center of the triangle to the colnéits  comes clearer abowg, where the curves flatten and spread
the same time, this is also a lower limit for the generation ofout over a larger region for decreasing volume fraction.
cavities. Third, considering an equilateral tetrahedron withThus, lowering the volume fraction shows similar signs as
side length R, the lower limit for the destruction of cavities progressing network formation discussed above, i.e, displays
is r,=1/3/2R (which is the distance from the center of the the effects of increasing heterogeneity. The following is note-
tetrahedron to its cornersin summary, we expect a strong worthy. While the volume fraction is doubled from the low-
decrease ofV3(r) atr =R (twofold—decreasing number of est to the highest value, one could argue that the character-
components and generation of tunngfellowed by a strong istic length scale, over which the heterogeneity extends,
increase above; =2R/+/3 (twofold—destruction of tunnels decreases b§/2. Since the characteristic valuBsr,, and
and generation of cavitigsand a weaker decrease abover, do not change with volume fraction, another natural
r,=+3/2R (onefold—destruction of caviti¢s This should choice for the characteristic length scale is thaluer ,,, at
hold with the restriction that distinct changeg aandr, can  which the minimum inW,(r) in the larger range occurs.
only be seen for the later stages of the network formationThe inset in Fig. 8 shows the dependence of this length scale
i.e., for higher values ofr,. The change of the connectivity r, on ¢ 3 The lines are drawn to guide the eye. If the
WS;(r) as a function ofr,, displayed in Fig. 5 reflects exactly increase in the characteristic length scale were only due to
these predictions in the vicinity of=R andr,, whereas the the change in volume fraction, the function should be linear.
(predictively weak change at, is not observed. We notice However, the data suggest at least that¢~®) does not
that in the interval[R,r;] the values decrease due to thefollow a single linear law. The length scale grows more than
increased number of bonds between particles. Above  proportional upon increasing ™ %, meaning that the change
flattening of the curve is observed, which originates from arin morphology is not only due to the bulk geometric stretch.
increasing degree of heterogeneity: At the beginning of the Apart from the larger characteristic length scale, lowering
network formation, the particle distribution is rather homo-the volume fraction also has the effect of a larger jump in
geneougcompared to the later stageand the destruction of Woy(r) at r=r4, and, in particular, a jump develops at
tunnels and generation of cavities occur in a differentn- =r,. Remembering that the values and r, are lower
dow than the destruction of cavities. In general, the moréoundsfor specific, dense structural units, the fact of large
heterogeneous the structure the more these regimes mix, reamp occur at these values means that more of these close-
sulting in a flattening of the connectivity curve by smearingpacked units are present in the low volume fraction samples.
out the extrema. So, in particular, for the connectivity, theThis goes in hand with the observation that the large scale
fact that the curve turns relatively flat in the ranger,, in  structuregvoids) are larger than expected only due to solely
comparison ta <r,, reflects the heterogeneity. This is sup- the stretchg 3, thereby compensating to maintain the pre-
ported by the approach to the constant value at largely.  scribed volume fraction.
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FIG. 6. Minkowski functionaWy(r): Dependence on the vol- FIG. 8. Minkowski functionalW,(r): Dependence on the vol-
ume fraction¢ for AE/kgT=0.0. ume fractione for AE/kgT=0.0.

3. Slow versus fast coagulation =0 are clearly separated form a group of curves to the val-

The influence of the interaction potential between the parues AE/kgT=0.076,0.522,1.20,2.07, followed by separate
ticles on the formation of the particle network shall be ex-curves for the higher energy barriers. The occurrence of a
amined next. This is of interest as in colloidal processinggrouping of the low energy barrier values can be attributed to
certain structural and/or mechanical properties are desiredhe fact that in this range the energy barrier is still surmount-
Alternation of the particle interaction offers a way to developable by thermal agitation. The curve listed #8E/kgT=0
appropriate processing routes for obtaining desired strucdoes not belong to this group. The reason is that it corre-
tures. We here compare samples at a volume fracthon sponds to a surface potentighy=0 mV (pure van der Waals
=0.4 with interaction potentials having a secondary mini-attractior), having a stronger attractive force than the poten-
mum, as listed in Table Il. This interaction potential with tial for which the energy barrier just vanishes when ap-
varying surface charge shall serve a model to mimic the situproaching fromg,=12 mV. In comparison to the change in
ation of varying depth of the secondary minimum and energyolume fraction, the increase in characteristic length scale
barrier by changing one parameter. It is this characteristiclue to the energy barrier is smaller. However, this is based
which is under consideration here, and not the precise formn the stretch of the curves to largevalues. The identifi-
of the interactions in dense colloidal systems. cation of a length scale from/,(r), as done for the volume

The secondary minimum in the interaction potential, simi-fraction dependence, manifests a different result. Figure 12
lar to lowering the volume fraction, results in a coarsening ofshows that the position of the minimury, is approximately
the morphology, as can be seen from the slower approach @bnstant for 0.6&cAE/kgT=<3.01 atr,,/R=1.6, slightly de-
the values linp_,,W,(r) in Figs. 10-13, in particular, for ~ creases forAE/kgT=4.31 tor,/R=1.4 (very flat mini-
=0,1,2. We notice that in all plots, the curves fdE/kgT mum), and further forAE/kgT=5.65 tor,,/R=1.23, as
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FIG. 7. Minkowski functionalW,(r): Dependence on the vol- FIG. 9. Minkowski functionalW;(r): Dependence on the vol-
ume fractiong for AE/kgT=0.0. ume fractiong for AE/kgT=0.0.

031404-7



MARKUS HUTTER PHYSICAL REVIEW E68, 031404 (2003

125

Wo(r)
Wy(r) | WR)

I
|
|
|
|
|
|
|
|
|
|
|
|
!
1

|
|
|
|
|
1
1

0 1 1 [} 1 1 1 ‘0.5 L L L L 1 1
15 2 25 15 2 25
1R rafR "R 7R rofR "R
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ergy barrierAE/kgT at volume fractiongg=0.4. ergy barrierAE/kgT at volume fractiong=0.4.

shown in the inset of Fig. 1@he lines are drawn to guide the coagulation at high volume fractions results in a freezing of
eye. The connectivity(see Fig. 1B flattens abover,,/R  the liquid structure, whereas lower volume fractions and/or a
=1.4 due to the energy barrier, reflecting a rather polydissecondary minimum in the particle interaction allow substan-
perse distribution of voids. In contrast to the volume fractiontjally more particle rearrangements and change in morphol-
influence on the connectivity, the energy barrier does nobgy [26,25,32. This is in agreement with the results pre-
lead to the sharp jumps at=r, andr,. In summary, the sented here. However, the information contained in these two
energy barrier increases the heterogeneity of the networkechniques of structure analysis are not identical and in the
however, equilateral tetrahedra are not as significant buildinguthor’s opinion both methods have their own right. The
blocks of the structure as for the low volume fractions. Fi-Minkowski analysis includes-point distribution functions
nally, we note that in the rangieR,r,] the curves show a for n>2 and allows to discuss the heterogeneity as illus-
stronger decrease than in the absence of an energy barrigiated above, but it is limited to analyze the structure on
This can be attributed to particles captured in the secondangngth scales smaller than the radius of the largest void
energy minimum, which is localed approximately in the [above which the function®V,(r) remain constant This

middle of this interval for all barriers examined here. restriction clearly does not apply to the pair correlation func-
tion. The latter allows, e.g., to analyze the freezing of the
D. Comparison to other structural analyses liquid structure on a wide range of length scales in fast co-

gulation.
A decrease in the volume fraction does not simply trans-
te inversely proportionally into a larger characteristic size

The structural analysis of colloidal particle gels generateda
from dynamic computer simulations most often concentrat(?
on the pair-correlation function. It has been revealed that fas
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FIG. 11. Minkowski functionaW,(r): Dependence on the en- FIG. 13. Minkowski functionaW,(r): Dependence on the en-
ergy barrierAE/kgT at volume fractionpp=0.4. ergy barrierAE/kgT at volume fractionp=0.4.
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of void spaces, but rather increases the degree of heterogparallel-body technique. The analysis revealed that decreas-
neity even more as shown above. This corresponds to theg the volume fraction and/or the presence of an energy
results found using Voronoi analysissee, e.g., Refs. barrier allow for larger heterogeneity to develop. It has been
[24,53), which examines the statistical distribution of found that the use of all four Minkowski functionals, instead
Voronoi cell volumes in a given configuration. Using confo- of solely the pore size distribution used elsewhere, indeed
cal laser scanning microscopy to determine the local spatiakveals further interesting details, in particular, the average
structures in dense colloidal gels, “surprisingly long tails” mean curvatur&V,(r) and the connectivityV(r).
were found in that distribution as the volume fraction is low-  The Minkowski functionals are, in the author’s view, an-
ered[24], indicating a large degree of heterogeneity. In gen-other useful tool for structural analysis in addition to the
eral, the Voronoi analysis relates closest to the Minkowskicommonly used pair-correlation function and bond-angle dis-
functional W, (r) of the four available, thus to the pore size tribution function. The difference between them being, first,
distribution given by Eq(5). They both probe the amount of the different length scales at which structural features are
free space around particles, whereas the other threesolved and second, the dependence on higher order distri-
Minkowski functionals provide then additional information. bution functions. As shown in the discussion of the results,

The pore structure has been analyzed by a measutbese methods of analysis overlap in certain regimes, thereby
closely related toNV;(r) on simulated gel$30,31]. It was  strengthening each method on its own. Thus, it rather de-
found that the presence of an attractive nonbonding interagaends on the specific interest in the structure, which of the
tion on long length scales enhances the formation of largemeasures shall be used. Studying the freezing of the liquid
pores. This may be due to an energetic preference for rathstructure upon fast coagulation at high volume fractions, the
dense regions, with accordingly big pores. In the presenpair-correlation function is a useful measure. If the interest
study, the interaction potential also exhibits a shallow secfocuses on the analysis of the heterogeneity of the network,
ondary energy minimum fog,=12 mV at intermediate dis- the method of choice could be the Minkowski functionals as
tances, in addition to an energy barrier. The latter results in alaborated in this study.
larger diffusion in phase space before primary, irreversible The precise definition of a pore size distribution, or sim-
bonds are formed. Thus, the simulations results indicate thatly of a pore, has not been attempted here. Although the
a (shallow long range attraction in combination with the present analysis allows to talk about heterogeneities and ex-
higher capability for configurational rearrangements prior toamine their extent, the way of how to measure void space
bond formation favor a higher heterogeneity. and pores is still unclear. The connectivitys(A, ;{p,}) as a

The local building blocks of the particle network have function of r, however, may serve as a measure even of
been examined in detail in terms of the bond-angle distribupractical significance for describing the macroscopic perme-
tion function and of the so-called “triangle”-distribution ability of a network.
function [32], measuring the areas of trihedra spanned by The use of Minkowski functionals with the parallel- body
bond-connector vectors starting from the same center patechnique is not restricted to computer simulations. The abil-
ticle. The combined analysis allowed to determine, amongty of confocal laser scanning microscopy to determine par-
other building blocks, the frequency of equilateral trianglesticles’ 3D coordinates to high precision allows to postprocess
and equilateral tetrahedra. These are strongly enhanced in thige data with the technique described here in order to obtain
low volume fraction samplef32], in accordance with the new and exciting insight into the structure of the network.
findings from Fig. 9 in this study.
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