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Heterogeneity of colloidal particle networks analyzed by means of Minkowski functionals
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~Received 20 December 2002; revised manuscript received 30 June 2003; published 12 September 2003!

The heterogeneity and large scale connectivity of colloidal particle networks, which are generated by
Brownian dynamics simulations, is examined. This is achieved by employing integral geometric measures in
the form of the Minkowski functionals or quermassintegrals. It is found that these measures in conjunction
with the parallel-body technique amount to a powerful tool to characterize the structure, going beyond the
information contained in the pair-correlation function. The development of heterogeneities during network
formation as well as their dependence on the volume fraction and the interaction potential is studied. In
particular, it is found that slow coagulation enhances the heterogeneity of the network compared to fast
coagulation.
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I. INTRODUCTION

Colloidal systems experience significant attention
only from experimentalists but also from theoreticians,
they may serve as model systems for atomic systems. Du
their characteristic length and time scales, interesting p
nomena become experimentally accessible. Such phenom
include complex flow behavior such as shear thinning a
shear thickening, as well as the formation of flocs, agg
gates, and gels upon destabilization. In the following,
focus our attention on the characterization of the structur
colloidal gels, in particular, on finding reasonable means
yond the pair-correlation function to describe the structur

In experiments at low volume fractions, the structu
characterization of colloidal particle aggregates is often p
formed by transmission electron microscope~TEM! @1–3# or
by scattering techniques@4,5#, where the latter directly re
sults in the pair-correlation functiong(r ) for dilute systems.
In nondilute systems, light scattering includes contributio
from multiple scattering which need to be eliminated by
ther using cross-correlation techniques@6–9#, index match-
ing @10#, or small angle neutron scattering@11#. Contrary, the
concept of porosity and pore size distribution used for
characterization of rigid bodies and compacted powd
@12,13# captures aspects clearly beyond the capability
pair-correlation functions, e.g., connectedness, and thus
vides useful additional information@13#. In nonrigid materi-
als, the determination of the porosity is a formidable ta
Freeze-fracture techniques in combination with TEM@14,15#
or cryogenic scanning electron microscope~cryo-SEM!
@15,16# have been used to study the microstructure of c
centrated suspensions. To hinder the formation of large
crystals @17#, cryo-SEM in connection with high-pressur
freezing@18# has recently been applied to examine the str
ture of surface sections@19#. In order not to be restricted to
the analysis of surface sections, restricted diffusion in free
dried food has been studied using nuclear magnetic r
nance techniques, which allows to get a certain measur
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the pore size distribution of the network as well@20#. How-
ever, most detailed local structural and dynamical inform
tion in dense systems has recently been obtained with c
focal laser scanning microscopy. This direct visualizati
technique has been used to study colloidal gels and gla
@21–24# via time-resolved determination of the particle
three-dimensional~3D! coordinates. Nevertheless, irrespe
tive of the problems encountered in the experimental str
ture characterization, the following question remains s
open. If one aims at establishing a relation between the st
ture of the particle gel and macroscopic, e.g., mechan
properties, it is unresolved which measures of the netw
structure capture those features relevant for understan
the macroscopic properties. It is noteworthy that even if
particle coordinates would be known, e.g., as in the cas
Brownian dynamics simulation studies@25–32# or confocal
laser scanning microscopy@21–24#, the relation between ge
structure and mechanical properties remains obscured du
the vast amount of information on the particulate level. Th
bridging the gap from the particle to the network scale a
understanding their inter-relation means to introduce an
termediate level of coarse graining. In order to gain a be
understanding of the structure-property relationship, it is
paramount importance to discuss the proper choice of coa
grained measures of the particle gel structure. Conside
the concept of the so-called load-bearing strings or fo
chains in granular media@33–36#, we can anticipate that als
in colloidal networks such substructures are relevant, wh
are not described by the pair-correlation function.

Computer simulations, and, in particular, Brownian d
namics simulations, are in the mean time well recognized
being appropriate for studying colloidal systems, and ha
been used extensively in recent years also to study the
agulation behavior and network formation~see, e.g., Refs
@25–32#!. Concerning the network structure characterizati
most of this work is restricted to give information on th
pair-distribution functiong(r ), either directly or by means o
the mass-fractal dimension. Only little information is ava
able beyondg(r ), e.g., in the form of bond-angle distribu
tion functions~depending on the three-point correlation fun
tion! @32# or in terms of the coordination number, which
restricted to provide short range information@29#. Only re-

a-
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cently, other measures closely related to the pore size di
bution have been used to characterize the structure of
network, which have been found to clearly distinguish b
tween simulated gels of differing texture@30,31#.

Mathematics provides various tools to characterize g
metrical objects. Whereas differential geometry is w
known for the discussion of local properties for a given s
face, e.g., critical and saddle points, it is the main focus
integral geometry to find measures for the overall morph
ogy and topology of the structure, i.e., also for the conn
tivity. We here want to illustrate to what extent the integ
geometric measures, which crystallize into the so-ca
Minkowski functionals and the parallel-body technique, a
useful to examine colloidal particle networks. For that p
pose we analyze particle networks generated by our Bro
ian dynamics simulation scheme used in previous stu
@32,37#.

The paper is organized a follows. After introducing t
Minkowski functionals in the following section and esta
lishing their link to the pore size distribution used in Re
@30,31#, they are then used to analyze configurations ge
ated by Brownian dynamics simulations of coagulating c
loidal systems for different volume fractions and interacti
potentials.

II. CHARACTERIZATION
OF PARTICLE-NETWORK STRUCTURES

A. Minkowski functionals

We here give a short introduction to the Minkowski fun
tionals of integral geometry. For more details the reade
referred to Refs.@38–41#. Minkowski functionals, also
known as intrinsic volumes~quermassintegrals, curvature in
tegrals!, are used in integral geometry to characterize s
faces and shapes. IfA denotes a compact domain inRd with
regular boundary]APC 2, andd21 principal radii of cur-
vatureRi ( i 51, . . . ,d21), functionalsWn (n>1) can be
defined by the following surface integrals:

Wn11~A!5
1

~n11!S d
n11D E]A

SnS 1

R1
, . . . ,

1

Rd21
DdS,

~1!

whereSn is the nth elementary symmetric function anddS
denotes the (d21)-dimensional surface element. In the sp
cific situation of a two-dimensional surface embedded
three-dimensional space, we find

W15
1

3E]A
dS, W25

1

3E]A

1

2 S 1

R1
1

1

R2
DdS,

W35
1

3E]A

1

R1R2
dS. ~2!

Note that the integrand inW2 is the mean curvature, wherea
the integrand inW3 is the Gaussian curvature~usually de-
noted byH andG, respectively!. Although using the concep
of regular surfaces for their definition here, the Minkows
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functionals are also well defined for polyhedra with singu
edges@39#. In addition to the above definitions in terms o
surface integrals, the zeroth Minkowski functionalW0 is de-
fined as the volume of the compact domainA. Conclusively,
the functional Wn has dimension (length)d2n (n
50,1, . . . ,d). As an example, for a set ofN nonoverlapping
spheres of radiusR in R3, the values of the functionals are

Wn5N
4p

3
R32n ~n50,1,2,3!. ~3!

In general, the characterization of a domainA,R3 as
described above results in four numbers,Wn(A) (n
50,1,2,3), measuring~i! volume, ~ii ! surface,~iii ! average
mean curvature~a characteristic length scale!, and ~iv! the
connectivity. The latter is defined as the number of disc
nected components plus the number of cavities minus
number of tunnels of the domainA, i.e., it is a topological
measure. It will prove to be of substantial interest in t
study of colloidal gels. The understanding of the morpholo
and topology of a domainA can be substantially enhanced b
examining the functionals when ‘‘blowing up’’ the domainA.
More rigorously speaking, one can study the Minkows
functionals of the« surrounding («>0) of A, A«ª$yuiy
2xi<«,xPA%. The domainA« is then called a parallel body
of A. The study of the Minkowski functionalsWn(A«),
which are now functions of« @in contrast toWn(A)], allows
for a deeper understanding of the structure, as shall be il
trated in this paper. The parallel-body technique is parti
larly useful when analyzing the structure of a many-parti
system of equally sized spheres with radiusR, e.g., colloidal
particle gels. Consider a set ofN spheres in domainV, with
then-point distribution functionsrn(Gn) (n51, . . . ,N) with
Gn[(x1 , . . . ,xn) and letAr5ø i 51

N Br(xi), whereBr(xi) is a
sphere of radiusr and centerxi . Our interest is now in the
properties of the surface of this union of penetrable sphe
]Ar . It can be shown that the Minkowski functionals forAr
are given by~see, e.g., Ref.@42#!

Wn~Ar ;$rn%!5 (
n51

N
~21!n11

n! E
V

dGnWnS ù
i 51

n

Br~xi !D
3rn~Gn! ~n50,1,2,3!. ~4!

For r 5R, we recover the four values for the Minkowsk
functionals of the real structure. Note that the Minkows
functionals capture some information of alln-point distribu-
tion functions in a condensed form due to the overlapping
n ~imaginary! spheres. However, this information can on
be recovered through ther dependence of the four function
given in Eq. ~4!. This fact raises the hope that, by usin
functionals ~4!, information can be revealed which is no
accessible through the pair-correlation function commo
employed. In the present study we attempt to illustrate
what extent the parallel-body technique in conjunction w
the Minkowski functionals offers a useful tool for characte
izing the structure, in particular, also the heterogeneity, of
colloidal particle networks. This technique has been succ
fully applied for analyzing the structure of a Lennard-Jon
4-2
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TABLE I. Potential parameters for the coagulating suspension.

Parameter Symbol Value Units~SI!

Hamaker constant of Al2O3 in water AH 4.76310220 J
Particle radius R5d/2 2.531027 m
Relative dielectric constant of water e r 81
Absolute temperature T 293 K
Valency of ions z 1
Surface potential c0 0.0–0.015 V
Inverse Debye screening length k 1018 m21
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fluid @42# and in cosmology for quantifying higher-order co
relations of galaxy cluster distributions@43,44#.

B. A possible definition of ‘‘pore size distribution’’

We here briefly address a possible definition of ‘‘pores’’
a network and the corresponding pore size distribution
particulate networks, this question is interesting since, e
two pores connected by a tunnel could also be conside
one pore, depending on ratio of the tunnel diameter to
diameter of the ‘‘big’’ pores. Thus, counting pores is in pri
ciple a highly nontrivial problem, at least in particulate ne
works. Among other structure characterization methods,
following definition of the pore size distribution is discuss
in Refs. @45–47#: It is given by the normalized probability
p(r 8)dr8 that a randomly placed point lies in the interv
@r 8,r 81dr8@ from the surface of the closest particle, i.e
from the pore surface. It is straightforward to show that t
distribution functionp(r 8) is proportional to the surface o
the setAr of ~overlapping! spheres defined above withr
5R1r 8, i.e.,

p~r 8!5NW1~AR1r 8 ;$rn%!, ~5!

whereN is a normalization constant. We mention that th
definition, which gives a useful measure for the pore s
distribution, is distinct from the pore size distribution dete
mined from mercury porosimetry for two reasons. First,
the latter method big pores with only small necks a
counted as small pores of the size of the necks@12# and
second, the former method overestimates the numbe
small pores since within every large pore a lot of test poi
are placed, also such close to the pore surface. Neverthe
taking the stand point that integral geometric measures
be useful for the network characterization and also app
due to their solid mathematical background, the pore s
distribution defined above nicely fits into this concept. As t
above definition of the pore size distribution function h
been used in Refs.@30,31# to analyze colloidal particle gels
we attempt to show in this paper to what extent the use oall
four Minkowski functionals is beneficial.

III. BROWNIAN DYNAMICS SIMULATIONS

A. Algorithm for particle dynamics

The general procedure for simulating the formation of
colloidal particle network used here has been describe
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detail in Refs.@32,37#. Particle motions are monitored i
terms of solvingN coupled stochastic differential equation
for the three-dimensional position vectorsr i in the over-
damped limit,

dr i5
1

z
Fi

pot~r1 , . . . ,rN!dt1A2kBT/zdW i ~ i 51, . . . ,N!,

~6!

in the absence of external forces and flow. In the pres
study, the system size isN58000. The dissipative nature o
the above equations originates from considering Stokes’ d
with a friction coefficientz (z56phsolventR with hsolvent
51023 Pa s), however, multiparticle hydrodynamic intera
tions are neglected. For the potential interaction forcesFi

pot

pairwise additivity of Derjaguin-Landau-Verwey-Overbee
~DLVO! interaction forces is assumed, the latter consisting
van der Waals attraction and electrostatic double layer re
sion,

Vpot5VvdW1Vel, ~7!

with

VvdW~r !5
2AH

12 F d2

r 22d2
1

d2

r 2
12 lnS r 22d2

d2 D G , ~8!

Vel~r !5pe re0dF4kBT

ze
tanhS zec0

4kBTD G2

exp~2k$r 2d%!.

~9!

The parameters used in this study are specified in Tab
and the resulting potential is displayed in Fig. 1. The cor
sponding values of the energy barrierDE, which denotes the
barrier between the local maximum and the secondary m
mum, is given in Table II.

The second term in the evolution equation~6! represents
the influence of the Brownian forces, the amplitude of whi
is coupled to the friction coefficient in the first, dampin
term in Eq.~6! through the fluctuation-dissipation theorem
the second kind~see, e.g., Refs.@48,49#!. A rigorous treat-
ment of random forces is given within the stochastic calcu
of the independent Wiener processesW i @49,50#. The dy-
namic equations~6! have been solved using a two-step int
gration scheme with an order of weak convergence of 2
an integration time stepDt51026 s.(231025)tBr in com-
parison to the characteristic Brownian diffusion timetBr .
4-3
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For the implementation of the constraint motions of bond
particles, the reader is referred to Refs.@32,37#.

B. Calculation method for Minkowski functionals

The Minkowski functionalsWn(Ar ;$rn%) for a point set
given in Eq.~4! are calculated as follows. While the volum
n50, is determined by Monte Carlo integration, one p
ceeds differently forn51,2,3 as described in detail in Re
@43#. The surface of the setAr introduced in Sec. II A con-
sists of piecewise spherical contours with curvature radiur.
If two spheres intersect, these contours are joined along
cular arcs, whereas there are singular points~vertices! if
three spheres intersect. In the present study in the absen
regular crystalline arrangements, singular points where f
or more spheres intersect have negligible weight and
therefore be neglected.

Consider now a sphereBr(xi) which is only partially cov-
ered by other spheres. If the amount of the uncovered
]Bi is denoted bySi , the Minkowski functionals forn
51,2,3 for that particular surface become

W1,i5
1

3
Si , W2,i5

1

3r
Si , W3,i5

1

3r 2
Si . ~10!

On the intersectionBr(xi)ùBr(xj ) of two spheres, the un
covered arcAi j of length l i j results in the contributions

W2,i j 5
1

6
a i j l i j , W3,i j 5

ai j l i j

3rAr 22~ai j /2!2
, ~11!

FIG. 1. DLVO-interaction potentialV(r /d) vs reduced center
to-center particle separationr /d (d particle diameter! for different
surface potentials, and corresponding energy barrierDE: ~a! pure
van der Waals attraction,~b! DE/kBT50, ~c! DE/kBT.5.65.

TABLE II. Energy barrierDE as a function of surface potentia
c0.

c0

~mV!
0.0–11.5 12.0 12.5 13.0 13.5 14.0 14.5 15

DE
(kBT)

0.0 0.076 0.522 1.20 2.07 3.01 4.31 5.6
03140
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with the anglea i j between the normals ofBr(xi) andBr(xj )
alongAi j , andixi2xj i5ai j ,2r . An uncovered vertexPi jk
at the common intersection of three spheresBr(xi), Br(xj ),
and Br(xk) contributes to W3 through the solid angle
spanned by the three surface normals at that position. U
l’Huilier’s formula one finds

F tanS 3

4
W3,i jk D G2

5tanS a11a21a3

4 D tanS a11a22a3

4 D
3tanS a12a21a3

4 D tanS 2a11a21a3

4 D ,

~12!

with

sinS a1

2 D5
ixi2xj i

2r
, sinS a2

2 D5
ixi2xki

2r
,

sinS a3

2 D5
ixj2xki

2r
. ~13!

In conclusion, the values for the functionalsWn(Ar ;$rn%)
for n51,2,3 become

W1~Ar ;$rn%!5(
i

W1,i , ~14!

W2~Ar ;$rn%!5(
i

W2,i2(
i j

W2,i j , ~15!

W3~Ar ;$rn%!5(
i

W3,i2(
i j

W3,i j 1(
i jk

W3,i jk , ~16!

where the sums run over all uncovered surface pieces, a
and vertices. A description of how to deal with the particl
intersecting the boundaries of the simulation box can
found in Ref.@51#, and shall not be discussed here in mo
detail.

C. Simulations of network formation

1. Progressing network formation

The evaluation of the formation of colloidal particle ge
is examined in the following. Here, as discussed above,
shall be achieved through studying ther dependence of the
four Minkowski functionals Wn(Ar ;$rn%) (n50,1,2,3)
given in Eq. ~4!. In order to get an understanding of ho
characteristic features emerge in these four functions,
first study a progressing network formation of a sample
volume fraction f50.40 and surface potentialc0
50.0 mV. The evolving network is built from particles i
the primary minimum of the DLVO-interaction potential a
particle surface contact, such bonds being considered
versible. The states at the different stages are labeled bypb
4-4



a

t
in

-
i

a

e

a

t
ma-
oid
dis-

w-

ds,
eres

HETEROGENEITY OF COLLOIDAL PARTICLE . . . PHYSICAL REVIEW E 68, 031404 ~2003!
which is defined as the number of bonded neighbors of e
particle averaged over all particles~which would be in the
range between 0 and 12 for spherical particles!, and finally
normalized by 12~i.e., 0<pb<1, pb51 only for hexagonal
close packing!. The Minkowski functionals for the differen
values ofpb are shown in Figs. 2–5, where the arrows po
in the direction of progressing network formation. Ther val-
ues are normalized with respect to the~real! particle radius
R. As the values of (W1 ,W2 ,W3) overall scale with the num
ber of particles, these functions have been normalized w
respect to their values of the real system atr 5R. ~For ex-
ample, the volume fraction is restricted to@0,1#, whereas the
amount of interface per volume can in principle become
bitrarily large.! Going from left to right in Figs. 2–5, we
notice that up tor 5R all curves collapse as in this range w
only probe an ensemble of isolated spheres~note that the
spheres have a hardcore radius ofR which keeps them from
overlap in the Brownian dynamics simulation!. The values of
Wn are hence given by Eq.~3!. At r 5R, the volume fraction

FIG. 2. Minkowski functionalW0(r ): Monitoring the progress
of network formation of a sample withf50.4 andDE/kBT50.0.

FIG. 3. Minkowski functionalW1(r ): Monitoring the progress
of network formation of a sample withf50.4 andDE/kBT50.0.
03140
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of the real system can be extracted, i.e.,W0(R)5f50.4. As
the imaginary spheres are blown up beyondr 5R, many-
particle correlation functions come into play, resulting in
separation of the curves for the different values ofpb . The
curves come to a constant value when the~overlapping!
spheres occupy the entire sample, which results inW05f
51 andW15W25W350. We notice in all four figures tha
this range becomes broader with progressing network for
tion, which indicates the existence of larger and larger v
spaces. Furthermore, it is interesting that the functions
play more characteristics the higher the value ofn. Where
the effect of space filling is simply slowed~see Fig. 2!, the
change in surface shows two regimes forr .R. Apart from
the extended approach toW1(r )50, the surface gain@i.e.,
the slope inW1(r )] just abover 5R turns negative which
can only occur in the presence of densified regions. Ho

FIG. 4. Minkowski functionalW2(r ): Monitoring the progress
of network formation of a sample withf50.4 andDE/kBT50.0.

FIG. 5. Minkowski functionalW3(r ): Monitoring the progress
of network formation of a sample withf50.4 andDE/kBT50.0.
The two-dimensional configurations sketch the formation of bon
cavities, and their destruction as the radius of the imaginary sph
increases.
4-5
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ever, the most intriguing function isW3(r ), Fig. 5. Recall
that this displays the number of components plus the num
of cavities minus the number of tunnels. In order to simpl
the discussion, the dots in the figure indicate ther valuesr c
above which ‘‘almost all’’ particles are part of the same clu
ter ~gel!, i.e., above which the number of components
close to one. Note that ther dependence of number of com
ponents has bad statistics since a few particles situated e
in a big void space or close to other particles significan
change the number of components for givenr. For that rea-
son, the dots in the figure denote the values above wh
99% of all particles are part of the same cluster. The val
are also tabulated in Table. III

For interpreting the cavity and tunnel contributions toW3
contained in Fig. 5, we discuss three characteristic radr
5R, r 1, andr 2. First, tunnels can form as soon as partic
may contact. Thus,r 5R is a lower limit for the formation of
tunnels, i.e., closed loops of particles. Second, conside
an equilateral triangle of side length 2R, one notices that a
lower limit for destructing a tunnel isr 152R/A3 ~which is
the distance from the center of the triangle to the corners!. At
the same time, this is also a lower limit for the generation
cavities. Third, considering an equilateral tetrahedron w
side length 2R, the lower limit for the destruction of cavitie
is r 25A3/2R ~which is the distance from the center of th
tetrahedron to its corners!. In summary, we expect a stron
decrease ofW3(r ) at r 5R ~twofold—decreasing number o
components and generation of tunnels!, followed by a strong
increase abover 152R/A3 ~twofold—destruction of tunnels
and generation of cavities!, and a weaker decrease abo
r 25A3/2R ~onefold—destruction of cavities!. This should
hold with the restriction that distinct changes atr 1 andr 2 can
only be seen for the later stages of the network formati
i.e., for higher values ofpb . The change of the connectivit
W3(r ) as a function ofpb displayed in Fig. 5 reflects exactl
these predictions in the vicinity ofr 5R andr 1, whereas the
~predictively weak! change atr 2 is not observed. We notice
that in the interval@R,r 1# the values decrease due to t
increased number of bonds between particles. Abover 1 a
flattening of the curve is observed, which originates from
increasing degree of heterogeneity: At the beginning of
network formation, the particle distribution is rather hom
geneous~compared to the later stages!, and the destruction o
tunnels and generation of cavities occur in a differentr win-
dow than the destruction of cavities. In general, the m
heterogeneous the structure the more these regimes mix
sulting in a flattening of the connectivity curve by smeari
out the extrema. So, in particular, for the connectivity, t
fact that the curve turns relatively flat in the ranger .r 1, in
comparison tor ,r 1, reflects the heterogeneity. This is su
ported by the approach to the constant value at largerr only.

TABLE III. Critical radius r c to capture 99% of all particles in a
single cluster.

pb 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.4

r c /R 1.167 1.169 1.168 1.154 1.125 1.006 1.004 1.0
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We note that, since the system is in a finite simulation b
and boundary effects are not counted, and according to d
nition ~1!, limR→`W3(R)50 as there is no surface.

2. Decreasing volume fraction

The effect of developing heterogeneities on t
Minkowski functionals has been examined in the preced
section as network formation progresses. We now wish to
the effect of diluting the system. To that end, volume fra
tions in the rangefP@0.2,0.4# in steps ofDf50.025 have
been examined. As the stationary state of the network for
tion is inaccessible by dynamic computer simulations,
structures examined here correspond to the instant whe
clusters/flocs joined to the single cell-spanning network.
though this choice is to a certain degree arbitrary, we po
out that the corresponding values of the cross-linking para
eter pb were within 15% of their extrapolated steady sta
values@29,37,52#. In the present context this is considered
be sufficient as the trends in the results come out clear.

The volume fraction dependence of the Minkowski fun
tionals is shown in Figs. 6–9, where the arrows point in
direction of increasing volume fraction. The trends of t
volume fraction dependence are not very clear in the ra
@R,r 1# for (W1 ,W2 ,W3), and the dashed arrow in Fig.
indicates the overall trend, which is however not followed
all samples. The influence of change in volume fraction
comes clearer abover 1, where the curves flatten and spre
out over a larger region for decreasing volume fractio
Thus, lowering the volume fraction shows similar signs
progressing network formation discussed above, i.e, disp
the effects of increasing heterogeneity. The following is no
worthy. While the volume fraction is doubled from the low
est to the highest value, one could argue that the chara
istic length scale, over which the heterogeneity exten
decreases byA3 2. Since the characteristic valuesR, r 1, and
r 2 do not change with volume fraction, another natu
choice for the characteristic length scale is ther valuer m, at
which the minimum inW2(r ) in the larger range occurs.
The inset in Fig. 8 shows the dependence of this length s
r m on f21/3. The lines are drawn to guide the eye. If th
increase in the characteristic length scale were only du
the change in volume fraction, the function should be line
However, the data suggest at least thatr m(f21/3) does not
follow a single linear law. The length scale grows more th
proportional upon increasingf21/3, meaning that the chang
in morphology is not only due to the bulk geometric stretc

Apart from the larger characteristic length scale, loweri
the volume fraction also has the effect of a larger jump
W3(r ) at r 5r 1, and, in particular, a jump develops atr
5r 2. Remembering that the valuesr 1 and r 2 are lower
boundsfor specific, dense structural units, the fact of lar
jump occur at these values means that more of these cl
packed units are present in the low volume fraction samp
This goes in hand with the observation that the large sc
structures~voids! are larger than expected only due to sole
the stretchf21/3, thereby compensating to maintain the pr
scribed volume fraction.
4-6
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3. Slow versus fast coagulation

The influence of the interaction potential between the p
ticles on the formation of the particle network shall be e
amined next. This is of interest as in colloidal process
certain structural and/or mechanical properties are des
Alternation of the particle interaction offers a way to devel
appropriate processing routes for obtaining desired st
tures. We here compare samples at a volume fractionf
50.4 with interaction potentials having a secondary mi
mum, as listed in Table II. This interaction potential wi
varying surface charge shall serve a model to mimic the s
ation of varying depth of the secondary minimum and ene
barrier by changing one parameter. It is this characteri
which is under consideration here, and not the precise f
of the interactions in dense colloidal systems.

The secondary minimum in the interaction potential, sim
lar to lowering the volume fraction, results in a coarsening
the morphology, as can be seen from the slower approac
the values limr→`Wn(r ) in Figs. 10–13, in particular, forn
50,1,2. We notice that in all plots, the curves forDE/kBT

FIG. 6. Minkowski functionalW0(r ): Dependence on the vol
ume fractionf for DE/kBT50.0.

FIG. 7. Minkowski functionalW1(r ): Dependence on the vol
ume fractionf for DE/kBT50.0.
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50 are clearly separated form a group of curves to the v
ues DE/kBT50.076,0.522,1.20,2.07, followed by separa
curves for the higher energy barriers. The occurrence o
grouping of the low energy barrier values can be attributed
the fact that in this range the energy barrier is still surmou
able by thermal agitation. The curve listed forDE/kBT50
does not belong to this group. The reason is that it co
sponds to a surface potentialc050 mV ~pure van der Waals
attraction!, having a stronger attractive force than the pote
tial for which the energy barrier just vanishes when a
proaching fromc0512 mV. In comparison to the change i
volume fraction, the increase in characteristic length sc
due to the energy barrier is smaller. However, this is ba
on the stretch of the curves to largerr values. The identifi-
cation of a length scale fromW2(r ), as done for the volume
fraction dependence, manifests a different result. Figure
shows that the position of the minimumr m is approximately
constant for 0.0<DE/kBT<3.01 atr m/R.1.6, slightly de-
creases forDE/kBT54.31 to r m/R.1.4 ~very flat mini-
mum!, and further forDE/kBT55.65 to r m/R51.23, as

FIG. 8. Minkowski functionalW2(r ): Dependence on the vol
ume fractionf for DE/kBT50.0.

FIG. 9. Minkowski functionalW3(r ): Dependence on the vol
ume fractionf for DE/kBT50.0.
4-7
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shown in the inset of Fig. 12~the lines are drawn to guide th
eye!. The connectivity~see Fig. 13! flattens abover m/R
>1.4 due to the energy barrier, reflecting a rather polyd
perse distribution of voids. In contrast to the volume fracti
influence on the connectivity, the energy barrier does
lead to the sharp jumps atr 5r 1 and r 2. In summary, the
energy barrier increases the heterogeneity of the netw
however, equilateral tetrahedra are not as significant build
blocks of the structure as for the low volume fractions.
nally, we note that in the range@R,r 1# the curves show a
stronger decrease than in the absence of an energy ba
This can be attributed to particles captured in the second
energy minimum, which is localed approximately in th
middle of this interval for all barriers examined here.

D. Comparison to other structural analyses

The structural analysis of colloidal particle gels genera
from dynamic computer simulations most often concentr
on the pair-correlation function. It has been revealed that

FIG. 10. Minkowski functionalW0(r ): Dependence on the en
ergy barrierDE/kBT at volume fractionf50.4.

FIG. 11. Minkowski functionalW1(r ): Dependence on the en
ergy barrierDE/kBT at volume fractionf50.4.
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coagulation at high volume fractions results in a freezing
the liquid structure, whereas lower volume fractions and/o
secondary minimum in the particle interaction allow subst
tially more particle rearrangements and change in morph
ogy @26,25,32#. This is in agreement with the results pr
sented here. However, the information contained in these
techniques of structure analysis are not identical and in
author’s opinion both methods have their own right. T
Minkowski analysis includesn-point distribution functions
for n.2 and allows to discuss the heterogeneity as ill
trated above, but it is limited to analyze the structure
length scales smaller than the radius of the largest v
@above which the functionsWn(r ) remain constant#. This
restriction clearly does not apply to the pair correlation fun
tion. The latter allows, e.g., to analyze the freezing of t
liquid structure on a wide range of length scales in fast
agulation.

A decrease in the volume fraction does not simply tra
late inversely proportionally into a larger characteristic s

FIG. 12. Minkowski functionalW2(r ): Dependence on the en
ergy barrierDE/kBT at volume fractionf50.4.

FIG. 13. Minkowski functionalW3(r ): Dependence on the en
ergy barrierDE/kBT at volume fractionf50.4.
4-8
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of void spaces, but rather increases the degree of heter
neity even more as shown above. This corresponds to
results found using Voronoi analysis~see, e.g., Refs
@24,53#!, which examines the statistical distribution
Voronoi cell volumes in a given configuration. Using conf
cal laser scanning microscopy to determine the local spa
structures in dense colloidal gels, ‘‘surprisingly long tail
were found in that distribution as the volume fraction is lo
ered@24#, indicating a large degree of heterogeneity. In ge
eral, the Voronoi analysis relates closest to the Minkow
functionalW1(r ) of the four available, thus to the pore siz
distribution given by Eq.~5!. They both probe the amount o
free space around particles, whereas the other th
Minkowski functionals provide then additional information

The pore structure has been analyzed by a mea
closely related toW1(r ) on simulated gels@30,31#. It was
found that the presence of an attractive nonbonding inte
tion on long length scales enhances the formation of lar
pores. This may be due to an energetic preference for ra
dense regions, with accordingly big pores. In the pres
study, the interaction potential also exhibits a shallow s
ondary energy minimum forc0>12 mV at intermediate dis
tances, in addition to an energy barrier. The latter results
larger diffusion in phase space before primary, irreversi
bonds are formed. Thus, the simulations results indicate
a ~shallow! long range attraction in combination with th
higher capability for configurational rearrangements prior
bond formation favor a higher heterogeneity.

The local building blocks of the particle network hav
been examined in detail in terms of the bond-angle distri
tion function and of the so-called ‘‘triangle’’-distribution
function @32#, measuring the areas of trihedra spanned
bond-connector vectors starting from the same center
ticle. The combined analysis allowed to determine, amo
other building blocks, the frequency of equilateral triang
and equilateral tetrahedra. These are strongly enhanced i
low volume fraction samples@32#, in accordance with the
findings from Fig. 9 in this study.

IV. CONCLUSIONS

The structure of colloidal particle networks generated
Brownian dynamics simulations was analyzed in terms of
Minkowski functionals of integral geometry, using th
v
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parallel-body technique. The analysis revealed that decr
ing the volume fraction and/or the presence of an ene
barrier allow for larger heterogeneity to develop. It has be
found that the use of all four Minkowski functionals, instea
of solely the pore size distribution used elsewhere, ind
reveals further interesting details, in particular, the aver
mean curvatureW2(r ) and the connectivityW3(r ).

The Minkowski functionals are, in the author’s view, a
other useful tool for structural analysis in addition to t
commonly used pair-correlation function and bond-angle d
tribution function. The difference between them being, fir
the different length scales at which structural features
resolved and second, the dependence on higher order d
bution functions. As shown in the discussion of the resu
these methods of analysis overlap in certain regimes, the
strengthening each method on its own. Thus, it rather
pends on the specific interest in the structure, which of
measures shall be used. Studying the freezing of the liq
structure upon fast coagulation at high volume fractions,
pair-correlation function is a useful measure. If the inter
focuses on the analysis of the heterogeneity of the netw
the method of choice could be the Minkowski functionals
elaborated in this study.

The precise definition of a pore size distribution, or sim
ply of a pore, has not been attempted here. Although
present analysis allows to talk about heterogeneities and
amine their extent, the way of how to measure void sp
and pores is still unclear. The connectivityW3(Ar ;$rn%) as a
function of r, however, may serve as a measure even
practical significance for describing the macroscopic perm
ability of a network.

The use of Minkowski functionals with the parallel- bod
technique is not restricted to computer simulations. The a
ity of confocal laser scanning microscopy to determine p
ticles’ 3D coordinates to high precision allows to postproc
the data with the technique described here in order to ob
new and exciting insight into the structure of the network
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